
GETTING STARTED WITH
D I A Z O T H E M I N G
Diazo is a method of mapping dynamic
website content (from a content management
system) to display inside of a static theme. This
is a great benefit to designers, because they
can build a theme with normal HTML and CSS,
and hook it up to a CMS without having to
learn much of anything about the CMSs and
their templating languages. In Plone, Diazo is
utilized within the add-on plone.app.theming,
which has been included since Plone 4.2.

If you already know how to build a static
theme, then the part left to learn is writing the
rules. The rules are what connect the dynamic
content to the static theme. The folder
containing the static theme will generally
contain a minimum of the following:

• index.html
• styles.css
• rules.xml
• manifest.cfg

The manifest.cfg file is used to provide
information about the theme (like the title)
which will display in Plone’s theming control
panel. It also provides a way of creating
variables that can be used within the
templates.

More Attributes

href - Specifies a url where content is pulled
from. Can include a path in the Plone site, an
external site, or even a template within the
static theme.

method - When method=”raw” is used, this
uses the original content as it is before any
other rules touch it.

Tips

Make sure all necessary parts of the content
are being brought in to the theme. This would
include things like scripts for analytics, or
accessibility helpers like the skip links.

Also for a CMS, you’ll need to check that all the
editing interfaces function and are properly
styled.

Newer versions of Plone’s plone.app.theming
product have a control panel available within
the Plone site for being able to edit the theme.
The interactive interface has a theme inspector
and rule builder along with a preview to help
with building the theme.

Reference

http://docs.diazo.org
https://pypi.python.org/pypi/plone.app.theming

Quick Reference Series

This publication is licensed by Six Feet Up, Inc. under the
Creative Commons Attribution-ShareAlike 3.0 License.
Find out more at www.sixfeetup.com/quickref.

The Plone name and the Plone logo are registered trade-
marks of the Plone Foundation. All other trademarks
and brand names used herein are acknowledged as the
property of their respective owners.

Six Feet Up is a woman-owned business that
develops, hosts and supports sophisticated

enterprise content management and
collaborative intranet projects. Our clients
include Harvard, UCLA, Eli Lilly & Oxfam.

Check out our other free Quick Reference
cards at www.sixfeetup.com/quickref

On and o�-site training services are
available on topics like Diazo Theming.

Learn more at:

sixfeetup.com/services/trainings

Syntax

The rules file uses XML syntax with the pre-
existing tags.

Each rule generally has two selectors - one for
the content, and one for the theme.

<replace theme=”/html/head/title”
content=”/html/head/title”/>

The content selector specifies which dynamic
content to grab from the CMS. The theme
selector then specifies where in the static
HTML file the content will be displayed.
This example uses XPath selectors, but CSS
selectors can also be used, if that is what you
are used to:

<replace css:content=”#portal-globalnav
a” css:theme=”#nav a”/>

You can also specify to use the content-chil-
dren or theme-children to manipulate the
items inside of the selected element:

<replace css:content-children=”#portal-
-globalnav” css:theme-children=”#nav”/>

Tags

theme - Specifies which HTML file to use for
the theme: <theme href=”index.html” />

replace - Remove the selected element from
the theme, and put in the selected element
from the content

before - Place the content before the selected
element in the theme

after - Place the content after the selected
element in the theme

drop - Only uses the theme or content selector
to remove the specified element

strip - Similar to drop, but only removes the
tag, leaving the content inside the tag

merge - Applies to the attributes of an ele-
ment, e.g. display the css classes of an element
from both the content and theme

copy - Used for copying the attributes of an
element in the content to the theme.

Order of execution

Below is the order the rules are executed for
each element in the site. The order of
statements in rules.xml is not important unless
multiple rules are performing the same task on
the same element. Order is determined by tag
type:

• before (*)
• drop
• replace (*)
• strip
• rules for attributes (merge, copy)
• before, replace, after for theme-children
• after (*)

(*) These rules are for all selectors except
for those with theme-children. Rules with
theme-children are executed 6th.

Attributes

For merge and copy, the attributes to be copied
need to be specified. This example will merge
the classes applied to the body from both the
CMS and static theme:

<merge attributes=”class” css:theme=
”body” css:content=”body” />

Conditions

Conditions can be used on a rule to determine
whether the rule should be applied or not.

if-path - rule will only apply if URL is matched.

if-content / css:if-content - Rule will only
apply if specified element exists in the content.

if - Rule will only apply if condition is true. This
checks variables set up in manifest.cfg.

Rules can also be nested inside a condition.
This can be helpful when working with various
templates

<rules css:if-content=”#personal-bar”>
<after css:theme-children=”#header-box”
css:content=”#user-prefs”/>
<after css:theme-children=”#header-box”
css:content=”#logout”/></rules>

Rule Matching

If a rule does not match the theme, it is silently
ignored.

If a rule does not match the content, the
element is dropped from theme.

Check out our other free Quick Reference cards at
www.sixfeetup.com/quickrefQuick Reference Series

